FEM–BEM mortar coupling for the Helmholtz problem in three dimensions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

The Yukawa Coupling in Three Dimensions

We consider several renormalizable, scale free models in three space-time dimensions which involve scalar and spinor fields. The Yukawa couplings are bilinear in both the spinor and scalar fields and the potential is of sixth order in the scalar field. In a model with a single scalar field and a complex Fermion field in three Euclidean dimensions, the couplings in the theory are both asymptotic...

متن کامل

Neumann Problem Three - Dimensional Helmholtz Equation

A method for explicitly solving the exterior Dirichlet problem for the threedimensional Helmholtz equation in terms of the Dirichlet Green's function for Laplace's equation has recently been found [6]. The present work shows how a similar technique may be used to solve the exterior Neumann problem in terms of the corresponding Neumann-Green function for Laplace's equation. The existence of the ...

متن کامل

The Kissing Problem in Three Dimensions

The kissing number k(3) is the maximal number of equal size nonoverlapping spheres in three dimensions that can touch another sphere of the same size. This number was the subject of a famous discussion between Isaac Newton and David Gregory in 1694. The first proof that k(3) = 12 was given by Schütte and van der Waerden only in 1953. We present a new solution of this problem.

متن کامل

Multiplier Spaces for the Mortar Finite Element Method in Three Dimensions

We consider the construction of multiplier spaces for use with the mortar finite element method in three spatial dimensions. Abstract conditions are given for the multiplier spaces which are sufficient to guarantee a stable and convergent mortar approximation. Three examples of multipliers satisfying these conditions are given. The first one is a dual basis example while the remaining two are b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2020

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2020.04.014